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APPROXIMATE SOLUTIONS TO OPTIMUM CLIMBING TRAJECTORY
FOR A ROCKET-POWERED AIRCRAFT

By Angelo Miele and James O. Cappellari, Jr.
SUMMARY

The climbing program of a rocket-powered aircraft 1s analyzed with
regard to minimum time trajectories. By using the indirect methods of the
calculus of variations it is shown that, if the centripetal acceleration
is neglected in the equations of motion, the totality of extremal arcs
is composed of a number of constant path inclination subarcs plus one
variable path inclination subarc. Under suitable hypotheses for the drag
function, a solution in a closed form is obtained for the variable path
inclination subare.

For certain types of drag polars the variable path inclination sub-
arc may split into several branches, one of which is subsonic, one tran-
sonic, and one supersonic. With regard to minimum time trajectories only
the subsonic and the supersonic branch are of interest; the transition
path from the former to the latter branch 1s studied and its optimum con-
figuration analytically predicted.

The boundary-value problem is considered. Methods are developed
for connecting the subarcs resulting from the Euler equations into the
extremal arc minimizing the climbing time. The effect of important design
parameters, such as wing loading or thrust loading, on the solutions is
investigated.

INTRODUCTION

Several new problems of applied mathematics have arisen in the
analysis of trajectories of high-speed aircraft which cannot be handled
by the use of conventional methods of performance analysis. One of these
problems is the determination of the optimum climbing technique from one
combination of altitude and velccity to another.

In the years preceding the second World War, the optimum climbing
vrogram of piston-engine airplanes was investigated by assuming that the
motion of the center of gravity of the aircraft is locally straight and




uniform. With the above hypothesis substantial simplifications were
made possible, leading to simple analytical relationships of great useful-
ness for design purposes.

For the case of a Jjet-propelled aircraft, on the other hand, it
becomes important to account for the ilnertia terms because of the high
velocity of flight and its rapid variation with the altitude. Thus,
the analysis of the optimum climbing technique shifts from the domain
of the ordinary theory of maxima and minima into the realm of the cal-
culus of variations.

The authors are indebted to Mr. Carlos R. Cavoti, Instructor at
Purdue University, for his cooperation in some of the analyses associated
with the present report.

SYMBOLS
a speed of sound, ft sec™t
A(M) function defined by equation (L8)
Ae area of exit section of engine, ££°
B constant defined by equation (49)
c(M) function defined by equation (50)
Cp drag coefficient
CL, 1ift coefficient
D drag, 1b
D3 induced drag, 1lb
F fundamental function defined by equation (9)
Gy..-Gs functions defined by equations (61) to (65)
g acceleration of gravity, ft sec™?
h flight altitude, ft
he energy height, ft, h + YE

2g

V= - =




N 2,

nondimensional constant

first members of equations representing constraints of
variational problem

ratio of induced drag coefficient to square of 1lift coefficient
lift, 1b

instantaneous mass of aircraft, 1b ft-lsec?

Mach number, V/a

quantity defined by equation (41)

atmospheric pressure, 1b ££-2

pressure 1in exit section of engine, 1b £t-2

air constant, ft2sec~2 og~t

reference surface, ft2

time, sec

thrust, 1b

flight velocity, ft sec-l

average velocity of gases in exit section of rocket, ft sec-1

derivative of air temperature with respect to altitude,
or rt-1

engine mass flow, 1b ft-lsec

ratio of specific heat at constant pressure to specific heat
at constant volume

variation consistent with prescribed end conditions
parameter

path inclination with respect to a horizontal plane
Lagrange multipliers

absolute density of air, 1b ft"usecg

absolute temperature of air, °R

nondimensional mass, Hmg

PoS




o function defined by equation (B3), 1b~1
¥ function defined by equation (B4), 1b~1sec™d
. -1 -1

w function defined by equation (B6), 1b™ ft sec

. . i A1 -1
Q function defined by equation (B20), 1b "sec
Superscript:
(") derivative with respect to time

Subscripts:

i initial condition

inc incompressible flow condition

f final condition

o} sea-level condition or zero-lift condition
T transition

* condition at tropopause

- condition immediately before corner point

+ condition immediately after corner point
OBJECT OF PRESENT RESEARCH

Preliminary variational studies by several authors, among others,
Cicala and Miele (refs. 1 to 3) and Behrbohm (ref. 4), have shown that
for an aircraft flying in a vertical plane the optimum paths are con-
trolled by nonlinear systems of differential equations which are inte-
grable, in general, only by approximate methods. Nevertheless, by
making suitable assumptions, solutions in a closed form can be obtained
in special cases. Up to the moment when a better understanding of the
general problem 1s reached, these approximate solutions must be con-
sidered as an indispensable tool in the hand of the aeronautical engi-

neer, in view of their practical importance as far as the preliminary
design is concerned.
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In this connection, it is to be noted that the need for an entirely
new, though simplified, approach to the study of the optimum climbing
technique of an aircraft was first emphasized in a paper by Lippisch
(ref. 5) which was carried out as a consequence of the pioneering develop-
ment of jet-propelled aircraft in Germany during World War II. Even
though the above research left the bulk of variational questions asso-
ciated with the climbing flight substantially unsolved, Lippisch's paper
threw considerable light on a new class of problems of the mechanics of
flight.

In the years following the second World War the problem of the opti-
mum climbing program attracted considerable interest and was initially
solved by assuming that the mass of the aircraft i1s ideally a constant
(this is approximately the case with a turbojet aircraft) and the centri-
petal component of the acceleration is disregarded, accounting only for
the tangential component. Thus, approximate solutions were detected by
Miele (refs. 6 to 9) who made use of Green's theorem and by Lush (ref. 10)
whose graphical-analytical method was based on the concept of energy
height. In recent times, the results which Miele indicated in refer-
ence 6 were rederived by Cartaino and Dreyfus (ref. 11) along the lines
?f the promising theory of dynamic programming, as developed by Bellman

ref. 12).

For the case where the timewise variation of mass is important,
that is, for a rocket-powered aircraft, the simplified investigation of
reference 13 is to be mentioned. The present study is an extension of
the theory of reference 13 and is a preliminary part to a general research
program carried out under the sponsorship and with the financial assist-
ance of the National Advisory Committee for Aeronautics. A rocket-
powered aircraft operating at constant engine mass flow is considered
and the induced drag is accounted for in the general treatment. Analyti-
cal methods are developed for predicting the optimum path of flight,
valid for the case where both the zero-lift drag coefficient and the ratio
of induced drag coefficient to square of 1ift coefficient are arbitrarily
specified functions of the Mach number.

For certain types of drag polar the existence of two regions of
best climb, one subsonic and the other one supersonic, is possible. As
a consequence, a logical question is to determine the altitude at which
the transition from subsonic climb to supersonic climb must be operated.
Several analytical techniques are presented to handle the above question.
Furthermore, methods are developed for combining the subarcs resulting
from the Euler equations into the optimum configuration for minimum
time of flight.



FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION

Hypotheses
The following hypotheses are used throughout the paper:

(1) The rocket-powered aircraft is ideally regarded as a particle
of mass m variable with time t.

(2)_The small angle between the thrust vector T and the velocity
vector V 1is neglected.

(3) The aerodynamic lag is disregarded, that is, 1ift L and drag
D forces are calculated as in unaccelerated flight.

(4) The centripetal component of the acceleration is not considered.

(5) The motion of the propellant in the piping system, in the com-
bustion chamber, and in the nozzle is steady with respect to a reference
frame rigidly connected with the solid part of the aircraft.

(6) Only flight paths contained in a vertical plane are investigated.

In view of hypotheses (1) and (2) the equation of motion on the
tangent to the flight path is written as follows:

J1=V+gsin 6 + D ; T.o (1)

In addition, the kinematical relationship in the vertical directionl is

given by:

Jo=h -Vsin® =0 (2)

where h denotes altitude above sea level.

With regard to the drag function, the hypothesis (3) leads to a
general expression of the form:

1The kinematical relationship in the horizontal direction is not
written here, since the horizontal distance does not appear anywhere in
the variational problem formulated in the following sections. However,
this relationship may be used a posteriori to calculate the horizontal
distance flown, once the optimum path configuration has been determined.
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D = Dg(h,V) + Dy(n,V,L) = D(h,V,L) (3)

even accounting for compressibility and viscosity effects on the polar;
on the other hand, effects of a thermal nature are not considered in
the present idealized scheme.

The thrust of the rocket engine is written as:
T = pVe + Ae(pe - P) = T(h) (%)
where p is outside atmospheric pressure.

Since B, Vo, and p, are constant (hypothesis (5)) and since

p = p(h), one concludes that the modulus of the thrust vector is only
altitude dependent. In turn, the mass m 1s a linear function of the
time:

m=m - Bt = m(t) (5)

the subscript 1 denotes initial condition of flight t; = O.

Approximate Estimation of the Induced Drag

Some comment is here supplied about the form of the equation of
motion on the normal to the flight path, used in the present report.
As 1s known, the exact configuration of the above equation is:

L -m(g cos 6 +V8) =0 (6)

Attention should now be focused on the interaction between equations (1)
and (6). The latter determines the lift required for given values of t,
V, 6, and 6. 1In turn, 1lift, velocity, and altitude determine the
induced drag D; thereby enabling one to calculate the total drag of

the aircraft. Once the 1ift is eliminated from equations (3) and (6),
the drag D can be analytically represented as:

D = D(t,h,V,6,6) (7

Now all the difficulties in treating present variational problems
are essentially assoclated with the complicated configuration of the
drag function. Solutions which are of immediate usefulness from an
engineering point of view can only by achieved by renouncing equation (7
and by replascing it with a simpler analytical form, more specifically
D = D(t,h,V). This circumstance, in turn, implies that, to the effect




of predicting the optimum distribution of speeds versus time, equation (6)
is to be abandoned and the following simplified form used in its place:

Jz =L - Hmg = 0 (8)

where H 1is a constant. Clearly, two approximations are embodied in
equation (8), hypothesis (4) and the fact that the variable term cos 6
is replaced with a kind of average value H, where O §H ¢ 1.

From a conceptual point of view, the use of equation (8) in place
of equation (6) is justified in all cases where the induced drag is small
with respect to the zero-lift drag. For a rocket-powered aircraft this
hypothesis is sound along a reasonable portion of the optimum path as
the subsequent analysis shows.

Among all the values which one may attribute to the constant H,
two have a special importance, H =1 and H = 0. As a matter of fact,
by setting H = 1 one overestimates the 1lift, thereby overestimating
the induced drag. On the other hand, by setting H = O, the opposite
situation arises since the drag reduces to the zero-lift drag. Assuming
that the centripetal acceleration is negligible, the optimum trajectory
is, in all probability, somewhat intermediate between the two limiting
ones calculated for H =1 and H = 0.

VARIATIONAL FORMUILATION

The set of equations (1), (2), and (8) is now considered where
D = D(h,v,L), T ="T(h), and m = m(t). The time t is assumed as
the independent variable of the problem. The dependent variables are
velocity V, altitude h, path inclination 6, and 1ift L. GSince the
number of unknown functions is four, while the number of nonholonomic
and holonomic constraints is three, one degree of freedom is left and
an optimum requirement can be, therefore, imposed.

After prescribing the initial coordinates t; =0, Vi = v(0) and
hy = h(0) and the final coordinates Ve, and hp, the variational

problem is formulated within the general frame of the problems of Mayer
type discussed in reference 1lh4 as follows: Among all sets of functions
v(t), n(t), 6(t), and L(t) satisfying equations (1), (2), and (8)
and the prescribed end conditions, to determine that special set which
minimizes the time +t; at final point.

It is to be noted that, in view of the assumed constancy for the
mass flow B, the brachistocronic path is ldentical with the trajectory
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minimizing the propellant expenditure. Furthermore, it must be pointed
out that, since 6 and I do not appear anywhere in the side conditions
of the problem, no requirement can be imposed on the initial and final
values of 6 and L. The end values for 6 and L will be seen to be
a mathematical consequence of the set of Euler equations.

Fuler Equations

A set of variable Lagrange multipliers kl(t), %g(t), KB(t) is

introduced and the following expression, denominated fundamental function,
formed:

Fe) M (9)

where Jj to J3 denote, respectively, the first members of equa-

tions (1), (2), and (8). Since the unknown functions are four in number,
the extremal properties of the desired optimum trajectory are described
in terms of four Euler equations, written as follows:

d_(éli_) _9F o (7 =1,2,3,4) (10)

where 27 =V, 2, =h, Z3 =6, and Z, = L.

After simple manipulations the following explicit form is obtained
for the Euler equations:

- %
1 oD .
M o= = i A, sin @ (11)
A =73<2—D-5E (12)
2 m\Wh dh

0 = cos e(xlg - KQV) (13)
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A
_ "™ oD )
O=Z ™M (24)
Discontinuity of the Eulerian Solution

The Euler equation (13) is of special interest, in that it indicates
that the extremal arc is discontinuous, being generally composed of:

subarcs of equation:

cos 8 =0 (15) g
subarcs of equation: ;
Mg - NV =0 (16)
As 8 stands for flight-path inclination, equation (15) represents
either a vertical dive or a vertical zoom, that is, 6 = ¥ %. Equa- ]
tion (16), on the other hand, corresponds to a condition of motion with
a continuously varying flight-path angle, as shown in the following
sections of this report. s
Corner Conditions
Because of the discontinuous nature of the solution the Erdmann-
Weierstrass corner conditions must be applied. These are continuity
conditions which must be verified at every corner of the discontinuous
extremal arc by the following five quantities:
i
F. OF. OF oF 4
-Z—.; 5 E,E e = 23 (17)
V oh 06 9 = o7,
3 oL o ¥
Since the fundamental function F 1is independent of both 6 and i,
the continuity of QE and §§ is automatically satisfied at all corner
06 oL .

points. The analogous requirement assoclated with the remaining three
quantities of equation (17) leads to:

(xl)_ = (7\1)+ (18)
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(P2). = (%), (29)

E‘l(T;ID - g sin e) + NV sin%\ = E\l(Tx;D

- g sin e> + AoV sin%
+

(20)

where the subscript (-) denotes a condition immediately before a cor-
ner point and the subscript (+) a condition immediately after a corner
point. Thus, the Lagrange multipliers A; and A, must be continuous

at junction points. Since thrust, drag, and mass are continuous at all
time instants, the discontinuity in the path inclination 6 implies
that, at corner points, the following relationship must hold:

(me - AV)_ = (M8 - AV, =0 (21)

Thus a corner point may lie on the subarc of equation (16) flown with
variable path inclination.

Boundary Conditions

For the problem under consideration, the boundary conditions include

a number of fixed end point conditions plus a number of natural conditions.

The latter must be obtained from the general transversality condition,
which i1s to be identically satisfied for all systems of variations (St,
62J> consistent with the prescribed end conditions:

f

L 4
6t+\/ -ZaF.—Z'JSt+ 3—1:"-52J =0 (22)
o5 L ¥y

[\

NS

The development of equation (22) leads to:

f

T - D .

{{% - Kl( — - g sin 8) - AoV sin EXSt + NBV + %26%}. =0 (23)
i
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Since 8ty = 8V; = 8Vy = Bhy = Shf =0 and Stf # 0, one deduces that
the only natural condition to be satisfied at final point is:

[% - kl(T ; D _ g sin 6) - NV sin é}f =0 (2k)

Notice, however, that equation (24) does not bear any further influence
on the problem, essentially because the trajectory minimizing the time
ty 1s identical with the trajectory minimizing any multiple of the above

time. The only office of the natural condition (eq. (24t)), therefore,
is to introduce a sort of scale factor for the distribution of lLagrange
multipliers along the extremal path.

Final velocity is free of choice.- Assume now that the final altitude
hf 1is specified and that the final velocity V¢ 1s not prescribed, as

was previously supposed, but free of choice &Vy # O. In such a case, the
following natural condition:

Ne =0 (25)

must be satisfied in addition to equation (24). The latter can also be
rewritten as

_ 1
Aot = (V sin e)f (26)

Energy height prescribed at final point.- If only the energy height

2
he = h + %E is prescribed at the final point while the individual values

for h and V are not specified, the variations th, SVf must satisfy
the relation:

(5}1 + % 6V>f =0 (27)

As a consequence, the transversality condition (23) yields the following
natural condition:

(7\lg - 7\2v)f =0 (28)

which is to be satisfied in addition to equation (24).
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Equations (24) and (28) can be solved in terms of the multipliers
Ay and A, as follows:

(29)

- | me
het 7 5T - Dl. (30)

As indicated by equation (28), the final point of the extremsl trajectory
may lie (and, in effect, does lie) on the subarc of equation (16) flown
with variable path inclination.

SUBARC FLOWN WITH VARIABLE PATH INCLINATION

Optimizing Condition

The subarc of the extremal solution defined by equation (16) is
now considered and the process of elimination of the lagrange multipliers
is carried out. In this connection, the time derivative of equation (16)
is calculated, yielding:

T-D

i\lg - AV - 7\2( (31)

- g sin e) =0

The four equations (11), (12), (16), and (31) can be regarded as members
of an algebraic system which is linear and homogeneous 1in Kl, %2, kl,

and Xg. As a consequence, an obvious condition for the existence of
nontrivial solutions for the multipliers and their derivatives is that:

-1 é_D sin 0 1 (0]
m av
l(dT . §12> 0 o 1
m\dn "~ 3n =0 (32)
g ' 0 0
0 g sin 0 + ; I g -V
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The development of the determinant (32) leads to the following result:

3D \f_a_D_g_T_)_
T D'Vav+g(ah = =0 (33)

which can also be rewritten as:

BET - D)\—_ﬂ v a[(T - D)ﬂ

=0 N
ov g oh (34)

Since the variational problem has one degree of freedom, one extra rela-
tion is needed, in addition to equations (1), (2), and (8), to completely
characterize the solution. This extra relation is supplied by equa-

tion (15) for the constant path inclination subarcs and by equation (33)
for the variable path inclination subarc. Thus, the optimizing condi-
tion is determined.

Parabolic Polar with Coefficients Depending on Mach Number

As a particular case a parabolic drag polar is now considered, that
is, a polar of the form:

Cp = Cpo(M) + K(M)C 2 (35)

where Cp 1is the total drag coefficient. Both CDO and K are assumed

to depend on the Mach number only. After accounting for the definitions
of drag and lift, the total drag is explicitly written as:

2
=2 2,2K L
D = Z pscy M +7M2p (36)

Atmospheric properties.- The atmosphere in which the rocket-powered
aircraft is flying is represented with the following set of differential
equations:

B |5
i
8

(37)

g
B

5 (38)

)

Gl o >

v
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do _ _ r0g
i (39)
da _ JRa (40)
dh 2a
where
n=1+% (41)
g
In the above equations p is the static pressure and R = %%, the air

constant. The o variable is supposed to be a known function of the
altitude.

Mach number derivatives.- Since the Mach number M = V/a can be
conceived as a function of velocity and altitude only, the two partial
derivatives of M with respect to V and h can be calculated,
yielding:

¥|¥

-2 (42)

M_ _ MR (43)

dh 2 52

Drag and thrust derivatives.- After accounting for equations (37)
to (43), the drag and thrust derivatives appearing in equation (33) can
be determined. The following results are obtained:

ac 2
V D _7 2 M Do) , 2 K/L ( M dK
& =L o ME(2 + + & 5= (-2 4+ 222 Ly
pS oV 2 Do ( Cpo dM) 7M2\p8) KdM) (b4)
V21D 2P agenzl M TDo)  prl S _m=-1M QK)
g pS 3 2 Do 2  Cp, aM \pS/ \ 2 KaM
(15)
2 A
V2 14T _ .= e (46)
g pS dh S
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Explicit solutions for optimum path.- In consideration of equa-
tions (L%) to (46), equation (33), which describes the optimum path, can

be rewritten as:
1Y 2 /Py Hmg 2
A (P‘) " Blpg) - oM ‘P_Sl -0 4D

where p, 1s the sea-level pressure and:

A dacC
A(M) =—e<l+ 7M2) +%CDOM2[3+ 7nM + L Do(1+ 7 n;lM‘g)‘l

5 Cpy M
(48)
BV. + A.p
- B * Aore (49)
Py
2 K 2 M dK n=-1 2

cm) =2 K3 4 onm@ - MAK[
(M) v Y KdM( y == 5 ﬂ (50)
equation (47) can be solved in terms of the ratio of static pressure at

altitude to reference pressure sg

o

2
P _B s+ 1+)+AC_HmL_ (51)
PO 2A BVe + AgPg

As indicated in the section entitled "Hypotheses" the nondimensional
constant appearing in the equation of motion on the normal to the flight
path is H = 0 in the case where the variational problem is studied
without accounting for the induced drag; the associated pressure-Mach
number relationship is supplied by:

2 - (52)

|t
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Once the static pressure p 1is known, the corresponding altitude h
can be determined from the equations of the standard atmosphere. For
tropospheric flight the following relationship holds:

2\l-n

i

[/
h =2 1 LAC \ -
S ] oot 3)
' v,

where 7T, 1is the static temperature at sea level and a the temperature-

altitude derivative in the troposphere; the two functions A(M) and
C(M) must be calculated by giving to the constant n the value which
corresponds to the troposphere. When the induced drag is neglected

(H = 0), equation (53) reduces to:

T _B 1-n
2y

With regard to stratospheric flight the static altitude is supplied

Rt Po
h = hy - — 1o =1 + /1 + kAC
* g &= Dy 2A [BV - Aep (55)

where an asterisk denotes magnitudes evaluated at the tropopause; the two
functions A(M) and C(M) must be computed for o =0 and n =1, in
view of the fact that the static temperature T is everywhere a constant
in the stratosphere. When the induced drag is neglected (H = 0), the
above expression reduces to:

- ne - RT Po B
h = hx - 2 Log(p* A) (56)

Comments on solutions.- With a transformation of coordinates from

2
the (h,V,L) space into the (he,V,L) space, where hg, = h + %g is the

so-called energy height, equation (34) can be rewritten as:
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?lEEL:;fﬁiijg =0 (57)
ov

he=Constant
I=Constant

4

The above expression is the basis for an extension, to the case of a
variable mass aircraft, of the energy-height method developed in ref-
erence 10 for an airplane whose mass is ideally constant; the speed for
best climb is to be determined as the velocity maximizing the power
excess (available power minus required power) for constant value of the
energy height h, and of the 1lift L (i.e., of the mass m).

With the graphical-analytical procedure associated with the energy-
height method, ten or fifteen nonoptimum points must be computed for
each couple of values of h, and L as a preliminary step toward finding

the optimum operating condition. With the solutions presented in the pre-
ceding section the optimum operating point is supplied by a straight-
forward computational technique. The advantages of the above procedure
should be especially evident to the aeronautical engineer in the case
where systematic design analyses are in order, such as those required

to study the effect of variations in wing loading or in thrust loading

on the optimum program of flight.

BOUNDARY-VALUE PROBLEM WHERE INDUCED DRAG IS NEGLECTED

With reference to the case where both the initial and final values
of altitude and velocity (i.e., altitude and Mach number) are specified,
the boundary-value problem is investigated. It consists of determining
that combination of subarcs which satisfies a set of prescribed end
conditions.

To simplify the discussion, the induced drag is neglected here
(H = 0). Thus with regard to the altitude-Mach number plane the variable
path inclination subarc 1s completely defined by equation (54) for tropo-
spheric flight and equation (56) for stratospheric flight; the subarc in
question shall be referred to in the following analysis as £(M,h) = 0,
having indicated with f(M,h) the function which results by calculating
the difference between left and right members of either equations (54)

or (56).

Notice that the curve f(M,h) = O splits the altitude-Mach number
plane (fig. 1) into two regions, a region (a) bounded by h-axis and by
the curve f(M,h) = O; and a region (B) bounded by the M-axis and by
the curve f(M,h) = O. The region (a) is defined as low-speed region
and (B) as high-speed region. DNotice also that four different types of

U=
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boundary conditions may exist, depending upon the relative position of
the initial point I and of the final point F with respect to the curve
f(M,h) = 0. Four different solutions are accordingly found for the
extremal trajectory. These solutions are indicated in table 1 and in
figure 1(a), where IABF denotes the extremal arc, composed of subarcs IA,
AB, and BF. The central subarc AB is always flown along the curve
f(M,h) = 0. The initial subarc IA is a vertical dive, if point I belongs
to the low-speed region (a) or a vertical zoom if point I belongs to the
high-speed region (B). Analogously, the final subarc BF is a vertical
zoom if point F belongs to the low-speed region (a) or a vertical dive

if point F belongs to the high-speed region (B).

Problems of Conditioned Optimum

It is of interest to determine the optimum paths of flight for the
case where some inequality is imposed on one or more of the variables
appearing in the variational problem.

Tables 2 and 3 and figures 1(b) and 1(c) supply the solution of
the minimum time problem under the limitations h 2 hi and hy <h § he,

respectively. The first limitation means that the aircraft is forbidden
to go to altitudes below the initial one. The second limitation means
that the search of the optimum flight paths is limited to the category
of arcs internal to the region of space bounded by the two horizontal
planes corresponding to the initial and final altitudes. As shown in
appendix A, the effect of both of the above limitations is equivalent

to introducing additional subarcs of equation h = Constant into the
composition of the extremal path.

Effect of Induced Drag

When the so-called induced drag is accounted for (H % 0), the
finding of the extremal arc associated with given end conditions becomes
a little more complicated than in the case H = 0. This is due to the
fact that equations (53) and (55) are representative of a surface in the
h,M,t space, while equations (54) and (56) characterize a curve in the
h,M plane.

Nevertheless, it can be said that, even in the case H # 0, all
possible combinations of subarcs which may arise in solving the boundary-
value problem are qualitatively the same as those covered by figure 1
for the case H = 0. 1In this connectiocn, a typical example of computa-
tional procedure is developed in the following sections of the report.
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APPLICATION OF PREVIOUS THEORY TO SPECIFIC CASES

In this section several numerical analyses are presented for typi-
cal rocket-powered aircraft configurations. The effect of variations
in the basic variables of the problem are studied.

Aerodynamic Characteristics

As a basis for the analyses to follow, two hypothetical aircraft
are considered. They are, respectively, denominated as configuration A
and configurstion B.

In figure 2 the ratio CDO/CDOi is plotted versus Mach number M;
nc

the Mach number derivative of the above ratio versus Mach number M is
plotted in figure 3. As it appears from figure 3 the main difference
between configurations A and B lies in the fact that the latter shows a

much steeper drag rise in the transonic region.2

For both configurations the ratio K/kinc is assumed to depend on

the Mach number M according to the data of figure 4; the Mach number
derivative of the above ratio is indicated in figure 5.

Computations for Configuration A

The hypothetical aircraft denominated as configuration A is con-
sidered in this section. The low-speed aerodynamic characteristics are
supposed to be such that Cpj. = 0.029 and K;,, = 0.2.

inc

Concerning the rocket engine, it is assumed that BVe/bOS = 0.02

and Ve/ao = 7. For simplicity the ratio Ae/S is regarded as negligi-
ble, in view of the qualitative character of the present set of examples.

Variable path inclination subarc.- Attention is now focused on the
subarc of the extremal solution discussed earlier.

As a first step, the two functions A(M) and C(M), (defined by
egs. (48) and (50)) are calculated and plotted in figures 6 and T for
both tropospheric flight and stratospheric flight. As a second step,

2This circumstance affects in a substantial way the optimum technique
of flight, as it is shown in the following examples.
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the relationship between h, M and @ = ng/pOS is calculated and

plotted for tropospheric flight (eq. (53)) and stratospheric flight
(eq. (55)) in figure 8.

In the case where the variational problem is solved without
accounting for the induced drag, the condition H = 0 must be imposed.
As a consequence, the variable path inclination subarc is represented
by that curve h(M) of figure 8 which corresponds to ¢ = O.

If, on the other hand, the induced drag is accounted for and if
(for instance) the equation of motion on the normal to the flight path
is written as L - mg = O, then the condition H =1 must be imposed.
It is to be noted, however, that the mass of the airecraft is a linear
function of time; as a consequence, the parameter ¢ 1is also linearly
variable with time. From this consideration it follows that the actual
curve h(M), which is representative of the optimum technique of flight
in the (h,M) plane, does not follow any of the ¢ = Constant curves
sketched in figure 8, but rather crosses them (in the sense of decreasing
values of @) as the flight program develops.

Figure 8(a) shows that the effect of the induced drag on the optimum
altitude-Mach number distribution is, from an engineering point of view,
negligible for tropospheric flight. The same effect, however, may become
important for flight in the stratosphere (fig. 8(b)) depending upon the
value of the instantaneous wing loading (for a given thrust loading) and
upon the flight Mach number.

Extremal arc for one specific set of boundary conditions.- The
following set of end conditions is now considered: My = 0.4, hy =0,

®; =0.03, Mg = 1.4, hp = 35,332 ft. The optimum path is investigated
under the limitation hj S h <€ he.

In accordance with the data of figures 1l(c) and 8(a) the extremal
arc includes one initial subarc IA flown in level flight, one central
subarc AB flown with variable path inclination and variable altitude, and
one final subarc BF, also flown in level flight. A computation procedure
is now developed, specially suitable to the present set of end conditions
(flight condition of type I, hy €h < hf).

Initial subarc TA.- Simple transformations of the equations of
motion show that the path of the aircraft can be complexly described in
terms of the three variables h, M, and ¢ = ng/pOS. For the case of

level flight, the differential relationship to be integrated is:
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where the additional constraint p = Constant is to be considered.
For the initial conditions of the preceding section, one must assume
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Corner point A.- In consideration of the fact that corner point A
belongs to both subarcs IA and AB, and that its altitude is known
(hA = O), the two remaining coordinates M, and Py must be found as

follows: the curve @(M), which results by forward integration of equa-
tion (58) started at point I, must be intersected with the curve (M)
which results by imposing the condition p/po =1 into equation (47):

Q = (59)

Both equations (58) and (59) are plotted in figure 9, where the corner
point A is shown (@ = 0.0291, M, = 0.557).

Central subarc AB.- For the subarc AB of the extremal path the equa-
tions of motion must be considered, subject to the constraint represented
by equation (L47).

After laborious transformations (omitted for the sake of brevity)
the following differential relationship may be obtained between Mach num-
ber and altitude:

dfh = 5
8.02
where
’ 2 K 1 pfhe |, 7 2 2 K A
G, =Bll+5& =) - =+ LCh M +5 222 61
2 C> po<s 2 “Do 7 M2 c) (61)

U =
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G, = ifPoam 14 (644)
2l, P _5 Ca
pO
_ a Pag
% = a5 5,8 (65)

A forward integration of equation (60) started at point A, ylelds the
Mach number-altitude distribution along the subarc AB (fig. 10(a)). The
integration process must be discontinued at the altitude hp = hy. Once
the h(M) relationship is known, the distribution of mass (fig. 10(b))
is supplied by:

Y B S Y N
v Véo C JA Py B (66)

The coordinates of corner point B are the following: MB = 0.89,
P = 0.0210, hg = 35,332 ft.

Final subarc BF.- For the particular example under consideration,
the final subarc BF is to be flown at constant altitude. The Mach number-
mass distribution is obtained by integrating equation (58), subject to
the constraint p = ppe.

Both the subarc BF and the complete trajectory IABF are represented
in the altitude-Mach number plane and in the mass-Mach number plane in
figure 10.
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Computations for Configuration B

The hypothetical aircraft designated as configuration B is now con-
sidered. The following nondimensional parameters characterize the air-
craft and the engine: cDoinc = 0.029, Kipe =0.2, Vg /ao =7, Ag/S 0.

Unless stated otherwise, the thrust loading is assumed such that
BVe/bOS = 0.02 and the so-called induced drag is neglected. All com-

parisons between configuration A and configuration B are made on a zero-
1lift drag basis.

General remarks on variable path inclination subarc.- The important
function A(M), which is defined by equation (48), is plotted in fig-
ure 11 for both tropospheric and stratospheric flight. In turn, the
altitude-Mach number distribution (eqs. (54) and (56)) is indicated in
figure 12.

A comparison between figures 8 (induced drag neglected, @ = 0) and
12 emphasizes the main difference between configurations A and B. Con-
figuration A (mild drag gradient in the transonic region) yields a single-
valued relationship M(h), while configuration B (steep drag gradient in
the transonic region) yields a multiple-valued relationship M(h) in the
altitude interval between 55,000 and 78,000 feet.

More specifically, associated with configuration B (fig. 12) are
three branches of the solution, a subsonic branch (solid line), a tran-
sonic branch (dotted line), and a supersonic branch (solid line). By
means of Green's theorem, as in reference 6, it can be proved that the
transonic branch is associated with maximum time solutions, while both
the subsonic and the supersonic branch are associated with minimum time
solutions.

The next question 1s then to establish whether climbing must be
performed at subsonic or supersonic speed or by using a combined subsonic-
supersonic technique of flight. In the latter case, it is relevant to
determine the special altitude at which the rocket-powered aircraft is
to be transferred from the subsonic to the supersonic branch of the
solution.

Effect of thrust loading on variable path inclination subarc.- To
investigate the effect of variations in thrust loading on the solutions,

three values are considered for the parameter BVq/bOS, namely 0.01,

0.02, and 0.05. The associated Mach number-altitude distribution for
the subsonic and supersonic branches of the solution is illustrated in
figure 13.

Ul E
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In both instances, the effect of increasing the thrust is to increase
the optimum Mach number at a given altitude. For the subsonic branch this
increase in the Mach number is decidedly more pronounced at the lower alti-
tudes, becoming rather slight at the higher altitudes. In the supersonic
domain, the increase is almost uniform through the given Mach number and
altitude range. :

Extremal path for one specific set of boundary conditions.- The
following set of end conditions is now considered: M = 0.545, h; =0,

1
m;g/S = 60 1b ££72; Mp = 2, he = 70,000 ft and the limitation

hj € h € hy 1is imposed.

The end conditions are such (fig. 14) that the initial point I and
the corner point A are coincident in the altitude-Mach number plane
I =A. Thus, the amplitude of the initial subarc IA shrinks to zero and
the optimum path reduces to a composite subarc ACDB, followed by a level
flight subarc BF.

In turn, the composite subarc ACDB embodies three parts, one variable
path inclination subarc AC flown along the subsonic branch of equation (52),
one variable path inclination subarc DB flown along the supersonic branch
of equation (52), and one transition subarc CD. :

With regard to the transition subarc CD, the present analysis is
circumscribed here to only those subarcs which are flown in level flight.
For the latter, the best transition altitude hT is to be such that

Q(hT> = 0, where the function Q is defined by equation (B20) of
appendix B.

Numerical computations show that (hT)O . = 58,800 £t and this
P

fact is clearly indicated in figure 15 where the function ( 1is plotted
versus the transition altitude hg.

When induced drag is accounted for, the extremal path modifies.
Admitting, for simplicity, that the optimum transition altitude does not
change because of induced drag effect, the analysis indicates that the
new extremal arc is the trajectory IA'C'D'B'F of figure 1k.

The induced drag causes only a minor shifting of the optimum dis-
tribution of speed with respect to the other distribution calculated for
zero induced drag. This result is largely due to the relatively low
initial wing loading considered in the preceding section. Considerably
larger effects must be expected for initial wing loadings of the order
of 100 1b ft=2,
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Comparison between optimum transition subarc and neighboring paths.-
In order to study the effect of deviations of the actual transition alti-
tude with respect to the optimum value predicted in the previous section,
the following example 1s carried out.

The initial condition of flight is assumed to be such that hy = O,
M; = 0.545, mig/S = 60 1b ft‘2, and the initial point I is identical

with the corner point A since I is located on the subsonic branch of the
variable path inclination subarc (fig. 12).

Four different final conditions of flight are considered; however,
all of them are chosen in such a way that the final point F is located
on the supersonic branch of the variable path inclination subarc. As
a consequence, the final point F and the corner point B are identical.

Paths of the form IACDBF (I = A, B =TF) are considered (fig. 12)
including one climbing maneuver AC performed along the subsonic branch
of the variable path inclination subarc and one climbing maneuver DB
performed along the supersonic branch of the variable path inclination
subarc. Intermediate between the above two climbing subarcs is one
transition path CD, which is assumed to occur at constant altitude hq.

In figure 16 the time ty necessary to reach the desired final

condition of flight is plotted as a function of the actual transition
altitude hp. From this graph the conclusion is reached that a reason-

able devistion in transition altitude with respect to the cptimum value
(hT)opt does not cause a substantial change in the time t¢. The

transition problem, therefore, is not a critical one for rocket-powered
aircraft.5

REMARKS ON DISCONTINUQUS NATURE OF SOLUTIONS

It has been seen in the preceding analyses that there exist dis-
continuities in the path inclination at the corner points where the
vertical dive or vertical zoom subarcs join the variable path inclina-
tion subarcs and where the horizontal transition subarcs join the vari-
able path inclination subarcs. These discontinuities are a mathematical

5Com.putations, omitted for the sake of brevity, have been carried
out for the case where the induced drag is accounted for. The qualita-
tive conclusions are essentially the same as in the case where the
induced drag 1s neglected.
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consequence of hypothesis (4), which neglects the centripetal component
of the acceleration. Of course, such discontinuities are not physically
possible during actual flight operations. Thus, in any application of
these methods, the actual flight path must be faired in the vicinity of
each corner point so as to continuously join the different subarecs.

Such falrings should be consistent with the structural capacity of the
aircraft and with the physiological ability of the pilot to withstand
acceleration. Moreover, they should be consistent with the thrust-drag
characteristics of the aircraft.

CONCLUSIONS

The climbing technique for a rocket-powered aircraft is analyzed
from the standpoint of minimizing the time required to fly from one com-
bination of speed and altitude to another. It is shown that the totality
of extremal arcs includes a number of constant path inclination subarecs
and a number of variable path inclination subarcs.

Concerning the latter, solutions in a closed form are developed.
Depending upon the type of drag polar, the Mach number-altitude relation-
ship can either be of the single valued type or of the multiple-valued
type. In this second case three branches generally exist for the solu-
tion, a subsonic branch, a transonic branch which is of no interest for
flight operations, and a supersonic branch.

The optimum altitude for the transition from the subsonic to the
supersonic branch of the solution is determined. With regard to the
boundary-value problem, several numerical examples are presented, having
the effect of illustrating the general procedures developed in the present
report.

Purdue University,
lafayette, Ind., November 8, 1957.
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APPENDIX A

ON THE COMPOSITION OF EXTREMAL PATH WHEN INEQUALITY OF

FORM h; < h € hy IS IMPOSED ON VARTATIONAL PROBLEM

In the main text it was stated that, if the inequality hi <hghe

is imposed upon the class of paths which are subject to the variational
investigation, additional subarcs of the form h = Constant are intro-
duced into the composition of the extremal arc. This statement is now
supported with the following process of reasoning.

When, in a certain variational question, one of the variables is
subject to some inequality which results from the characteristic con-
ditions of the problem, the inherent information is to be translated
into the setting of the question at the very beginning, otherwise the
solution may not be consistent with the desired limitation. In this
connection, it is of interest to exploit the artifice of parametric
representation of the variable involved in the inequality. Such a tech-
nique was originally introduced in reference 15 in a problem of optimum
burning program; its main effect consists in treating a constraint
involving an inequality under the same analytical procedures developed
for a constraint represented by an equality.

The flight altitude h 1s represented as a function of a parameter
n (fig. 17) where

< s _
-0 Sy S 1, the altitude is h = hy

o <N §® the altitude is h = he

N, <1< N, & one-to-one correspondence is assumed between h and 7.

With the above scheme 1 1is considered as an independent parameter,
as far as the flight altitude is concerned, and is allowed to vary between
-0 and «. The variable h becomes a dependent quantity, varying between
hy and hp according to the scheme shown in figure 17.

Notice that %Q = 0 represents either a level flight condition
| o . ‘

h = h; or a level flight condition h = hg. On the other hand, %E £0
L]

is representative of any other operating condition of the aircraft at

U
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altitudes which are intermediate between the two limiting ones. Notice

also that 1 1is only a parameter and that there is no necessity of attrib-

uting to it any special physical meaning.

The time derivative of the flight altitude is written as:

nh=4 4 (A1)
dn

and, as a consequence, the fundamental function F modifies as follows:

. . D - .
F=7\1<V+g51n6+ mT>+7\2(g—‘:-n-Vsine)+7\5(L-ng)
(A2)

The independent variable of the variational problem is the time t. The
dependent variables are now V, % (in place of h), 6, and L. The
three Euler equations associated with V, 6, and L are still supplied
by equations (11), (13), and (14). On the other hand, the Euler equa-
tion associated with the new variable n 1s written as follows:

LE-E .o (a3)
) on
where:
2
ok _MMD_dndn, , ;dh (ak)
oF dh
oF _ 5, dn (A5)
6 A
a foF\ _ 1 an an - ’
—[=] = Ao =+ A —= 7 (A6)
dt(an) 2an T 22
From equations (A3) to;(A6) one obtains:
. A
dhfy, - ~1/9D _ 4T} . A
dn7\2 m(ah dh) 0 (1)
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Equation (A7) splits into the following two solutions:

: %l oD 4T

%2 - __(gﬁ - 22l =0 (A8)
dh _
a; =0 (A9)

Equation (A8) is identical with equation (12). Equation (A9), in turn,
yields the two extra subarcs h =h; and h = hg, as is clear from the

device of parametric representation illustrated in figure 17.
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APPENDIX B
ANALYSIS OF TRANSITION SUBARC

In the main text the transition problem was posed: For certain
types of drag polars the variable path inclination subarc may split into
two useful portions, that is, a subsonic branch and a supersonic branch.
This circumstance causes the following question to arise: What is the
best transition maneuver (from a time standpoint) in order to transfer
the aircraft from the subsonic branch to the supersonic branch of the
solution?

In the present appendix an attempt 1s carried out to supply an
engineering answer to the above problem. The analysis is circumsecribed
from start to the class of transition subarcs which are flown in level
flight. Induced drag effects are neglected.

Assume that the boundary conditions are as in figure 18, the initial
point I corresponding to low subsonic speed is located, in the velocity-
altitude plane, on the left with respect to the subsonic branch of the
solution with variable path inclination; the final point F corresponding
to high supersonic speed is located on the right of the supersonic branch
of the solution with variable path inclination. Assume also that the
limitation hy € h € hy 1is imposed and consider the family of trajec-

tories IACDBF. Each element of the above famlly is composed of five
subarcs:

(1) Subarc IA flown in level flight at h = hy

(2) Subarc AC flown along the subsonic branch of the solution with
variable path inclination (eq. (52))

(3) Transition subarc CD flown in level flight at h = h.11

(4) Subarc DB flown along the supersonic branch of the solution
with variable path inclination (eq. (52))

(5) Subarc BF flown in level flight at h = hg

It is clear that, for the previcusly defined family of trajectories,
the time 1ty necessary to reach the desired final point is only a func-

tion tf(hT) of the transition altitude hp. It follows that the optimum

transition subarc is the one for which the following relation of the
ordinary theory of maxima and minima is satisfied:
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ate 1)
_f_o Bl
dhp

Time Interval from Initial Point to Final Point

Simple transformations of equations (1), (2), and (5) yield the
following differential relationship (the induced drag is neglected):

at  _
m - Bt = ¢ dh + @& 4V (B2)
.1
0 = 5~ o(h,V) (B3)
- g =
¥ = T - o) ¥(n,V) (B4)

whose corresponding integral form is:

te = %E. - exp(-Bwﬂ (BS)

w=f (V an + ¢ av) (B6)
IACDBF

The derivative of the time tg¢ with respect to the transition altitude
hp 1is supplied by:

dte _ dw
EEE = mieXP('ﬁw) EE; (B7)

and, as a consequence, the condition (B1) is equivalent to:

dw
= =0 B8
th (88)

U= E
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- Application of Theorem of Derivation Under Integral Sign

The line integral (B6) can be broken into five parts, each associated
with a different subarc of the family of trajectories under consideration:

® = wpy + wyp + Opp + Opy + Wpp (89)
W, = f o av (B10)
W TA IA
1
1
5
Wpp = f (v an + @ av) (B11)
AC
Wy = f o av (B12)
CD oD
¥
wpg = (v ah + ¢ av) (B13)
- DB
= o dv (B14)
o= ),
“B BF
A change in the transition altitude hT causes a change in the
integrals (B11l) to (B13) because the limits of integration and/or the
integrand function are affected. The following results are consequently
obtained:
dw
IA
—= =0 Bl
- (B15)
. dw av
dhAC ) (WC * % dhc> (516)
T h=hnp
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dw av
%D _ f CLIFU S - 0y —C (B17)
dhm, V. Oh dh
C h=hq

Aoy < dVD>

—L = oYy + O, — (B18)

th D D dh h=hT

dhy,

From equations (B8) and (B15) to (B19) the following fundamental result
arises:

Q(hn) = i av =0 (B20)
(bp) = \Vo - ¥p + - =

\

The above equation implicitly defines the optimum transition height
(hT)opt and it must be solved, in general, by approximate methods.

Application of Green's Theorem

The result represented by equation (B20) can also be achieved by
means of a radically different technique based on the use of Green's
theorem.

Consider (fig. 18) two alternate trajectories, namely the path
IACDBF whose transition subarc CD is flown at altitude hp and the path

JAC'D'BF whose transition subarc C'D' is flown at altitude h'T = hT + AhT.

For the former trajectory the function ® is supplied by equation (B6).
With regard to the latter trajectory the function w 1is given by:

w' = f (v @h + @ av) (B21)
IAC'D'BF

N =~
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The increment Aw associated with the increment AhT of the transition

altitude can now be expressed in the form of a cyclic integral:

Md = - = j{ (v dh + @ av) (B22)
CC'D'DC

In turn, the above line integral can be transformed by means of Green's
theorem into a surface integral associated with the area a bounded by
the clockwise circuit CC'D'DC:

Consider, now, a set of smaller and smaller increments AhT. In the
limit Ahp shrinks into the infinitesimal increment dhp; as a conse-
quence, Ao tends to dw, the latter quantity being supplied by:

Vn/30
dw = dh 9% _ V) gay Bok
T_/;,(Bh av) (B2)
C h=hq

The condition (B8) is, therefore, equivalent to:

Vp
f (_5‘9 - _aq’)dv -0 (B25)
VA \Oh OV
C h=h,

Since the above line integral is to be computed at constant altitude,
the following relationship holds:

Al VD a

N gy - - B26

/V = (¥p Wc)h=hT (B26)
c h=h,
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The combination of equations (B25) and (B26) yields once more the funda-
mental equation:

VD
Yo - ¥p + f 2 gy =0 (B27)
h=hT

The same result has been obtained by the writers starting from the
Frdmann-Weierstrass corner conditions. The demonstration is omitted
for brevity.

(O I R >
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TABLE 1.- COMPOSITION OF EXTREMAL ARC WHEN NO

LIMITATION IMPOSED ON FLIGHT PATH

Region Region

Flight where where Subarc Subarc Subarc

conditions point I point F IA AB BF

belongs belongs

I a B 6 = -n/2 | £f(M,h) =0 6 = -n/2

II a @ 8 =-x/2 | f(M,h) =0 | 8 = x/2

III B a 0 =xn/2 f(M,h) = 0 8 =xn/2

v B B 6 =x/2 £f(M,h) =0 6 = -n/2

TABLE 2.- COMPOSITION OF EXTREMAL ARC UNDER LIMITATION h 2 hy

Region Region

Flight where where Subarc Subarc Subarc

conditions point I point F IA AB BF

belongs belongs

I a B h =hy f(M,h) =0 8 = -x/2

II a a h = hy f(M,h) =0 6 =n/2

IIT B a 6 =x/2 f(M,h) = 0 6 =n/2

v B B 6 =n/2 £f(M,h) = 0 0 = -n/2
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TABLE 3.- COMPOSITION OF EXTREMAL ARC UNDER

LIMITATION h; € h € hy

Region Region
Flight where where Subarc Subarc Subarc
condition point T point F IA AB BF
belongs belongs
I a B h =hy f(M,h) = h = he
II a a h = hy f(M,h) = =n/2
III B a 6 = n/2 £f(M,h) = =n/2
IV B B 6 =xn/2 f(M,h) = h = he
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Figure 2.- Zero-1ift drag coefficient as a function of Mach number.
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Figure 15.- Determination of optimum transition altitude (configura-
tion B; induced drag neglected).
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desired final point (configuration B; induced drag neglected).
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